miércoles, 9 de noviembre de 2011

2.12 CIRCUITO EN PARALELO

El circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo.
En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones:





martes, 8 de noviembre de 2011

2.11 EL CIRCUITO EN SERIES


Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadoresresistencias,condensadoresinterruptores, entre otros.) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.
En función de los dispositivos conectados en serie, el valor total o equivalente se obtiene con las siguientes expresiones





Interruptor AInterruptor BInterruptor CSalida
AbiertoAbiertoAbiertoAbierto
AbiertoAbiertoCerradoAbierto
AbiertoCerradoAbiertoAbierto
AbiertoCerradoCerradoAbierto
CerradoAbiertoAbiertoAbierto
CerradoAbiertoCerradoAbierto
CerradoCerradoAbiertoAbierto
CerradoCerradoCerradoCerrado

2.10 EL VOLTIMETRO


Un voltímetro es aquel aparato o dispositivo que se utiliza a fin de medir, de manera directa o indirecta, la diferencia potencial entre dos puntos de un circuito eléctrico. Se usa tanto por los especialistas y reparadores de artefactos eléctricos, como por aficionados en el hogar para diversos fines; la tecnología actual ha permitido poner en el mercado versiones económicas y al mismo tiempo precisas para el uso general, dispositivos presentes en cualquier casa de ventas dedicada a la electrónica.
Los voltímetros, en esencia, están constituidos de un galvanómetro sensible que se conecta en serie a una resistencia extra de mayor valor. A fin de que durante el proceso de medición no se modifique la diferencia de potencial, lo mejor es intentar que el voltímetro utilice la menor cantidad de electricidad posible. Lo anterior es posible de regular con un voltímetro electrónico, el que cuenta con un circuito electrónico con un adaptador de impedancia.
Para poder realizar la medición de la diferencia potencial, ambos puntos deben encontrarse de forma paralela. En otras palabras, que estén en paralelo quiere decir que se encuentre en derivación sobre los puntos de los cuales queremos realizar la medición. Debido a lo anterior, el voltímetro debe contar con una resistencia interna lo más alta que sea posible, de modo que su consumo sea bajo, y así permitir que la medición de la tensión del voltímetro se realice sin errores. Para poder cumplir con este requerimiento, los voltímetros que basan su funcionamiento en los efectos electromagnéticos de la corriente eléctrica, poseen unas bobinas con hilo muy fino y de muchas espiras, a fin de que, aún contando con una corriente eléctrica de baja intensidad, el aparato cuente con la fuerza necesaria para mover la aguja.
Ya en estos días es posible encontrar en el mercado voltímetros digitales, los que cumplen las mismas funciones que el aparato tradicional, pero contando con las nuevas tecnologías. Por ejemplo, este tipo de aparatos cuentan con características de aislamiento bastante considerables, para lo que utilizan circuitos de una gran complejidad, en lo que respecta a su comparación con el voltímetro tradicional



2.9 EL AMPERIMETRO


Un amperímetro es un instrumento que sirve para medir la intensidad de corriente que está circulando por un circuito eléctrico. Un microamperímetro está calibrado en millonésimas de amperio y un miliamperímetro en milésimas de amperio.
Si hablamos en términos básicos, el amperímetro es un simple galvanómetro (instrumento para detectar pequeñas cantidades de corriente) con una resistencia en paralelo, llamada electronica Disponiendo de una gama de resistencias shunt, podemos disponer de un amperímetro con varios rangos o intervalos de medición. Los amperímetros tienen una resistencia interna muy pequeña, por debajo de 1 ohmio, con la finalidad de que su presencia no disminuya la corriente a medir cuando se conecta a un circuito eléctrico.
El aparato descrito corresponde al diseño original, ya que en la actualidad los amperímetros utilizan un conversor analógico/digital para la medida de la caída de tensión en un resistor por el que circula la corriente a medir. La lectura del conversor es leída por un microprocesador que realiza los cálculos para presentar en un display numérico el valor de la corriente eléctrica circulante.


2.8 EL INTERRUPTOR


Un interruptor eléctrico es un dispositivo utilizado para desviar o interrumpir el curso de una corriente eléctrica. En el mundo moderno las aplicaciones son innumerables, van desde un simple interruptor que apaga o enciende un bombillo, hasta un complicado selector de transferencia automático de múltiples capas controlado por computadora.
Su expresión más sencilla consiste en dos contactos de metal inoxidable y el actuante. Los contactos, normalmente separados, se unen para permitir que la corriente circule. El actuante es la parte móvil que en una de sus posiciones hace presión sobre los contactos para mantenerlos unidos.
De la calidad de los materiales empleados para hacer los contactos dependerá la vida útil del interruptor. Para la mayoría de los interruptores domésticos se emplea una aleación de latón (60% cobre, 40% zinc). Esta aleación es muy resistente a la corrosión y es un conductor eléctrico apropiado. El aluminio es también buen conductor y es muy resistente a la corrosión.
En los casos donde se requiera una pérdida mínima se utiliza cobre puro por su excelente conductividad eléctrica. El cobre bajo condiciones de condensación puede formar óxido de cobre en la superficie interrumpiendo el contacto.
Para interruptores donde se requiera la máxima confiabilidad se utilizan contactos de cobre pero se aplica un baño con un metal más resistente al óxido como lo son el estaño, aleaciones de estaño/plomo, níquel, oro o plata. La plata es de hecho mejor conductor que el cobre y además el óxido de plata conduce electricidad



2.7 EL CONDENSADOR


Un condensador es un dispositivo eléctrico que permite acumular cargas eléctricas.
Se denomina Capacidad C a la relación entre la carga Q almacenada por el condensador y la tensión U a la que está conectado.
CAPACIDAD DE UN CONDENSADOR
cond1.gif (1034 octets)
       Q
C = -------
       U


C en Faradios
Q en Culombios
U en voltios
CAPACIDAD DE UN CONDENSADOR PLANO
-  S superficie de las armaduras
-  
distancia entre armaduras
epermitividad relativa (cte. dieléctrica)  1 para el vacío y aprox. para el aire: 1 para el vacío y aprox. para el aire
-  
eo permitividad absoluta  1/ 36 P 109  
         er x eo  x S
C = --------------
      d

     
Arriba

CARGA  DE UN CONDENSADOR
Cuando se conecta un condensador C a una fuente Vse procuce un régimen transitorio dado por las ecuaciones siguientes:
La cantidad RC  se denomina constante de tiempo del circuito, y su magnitud es importante para el tiempo de carga del condensador, como vas a ver en la siguiente simulación:

2.6 LA RESISTENCIA


La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.
Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.
Para una gran cantidad de materiales y condiciones, la resistencia eléctrica depende de la corriente eléctrica que pasa a través de un objeto y de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón de la tensión y la corriente, así :1



R = {V \over I}

Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductoresaislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.